We have two objectives. First, we need derivate the sigmoid function:
S(x) = \frac {1}{1 + e^{-px}}
using very simple techniques.
Second, we must to find the more right and more left function limits:
\lim_{x \to +\infty }{S(x)} = 1 e \lim_{x \to -\infty }{S(x)} = 0
Derivative sigmoid
We are looking for
\frac{\mathrm{d} S(x)}{\mathrm{d} x} = S'(x).
To deriving it, we'll apply the quocient rule, which is remembered here:
\left ( \frac{f}{g} \right )' = \frac{f'g - g'f}{g^2}
Said that, taking:
f(x) = 1 \Rightarrow f'(x) = 0
and
g(x) = 1 + e^{-px} \Rightarrow g'(x) = -pe^{-px}
Then,
S'(x) = \left ( \frac{f}{g} \right )' = \frac{0g - g'1}{g^2} = \frac{pe^{-px}}{(1 + e^{-px})^2}
Objective reached. But if you try Wolfram Alpha to do it, you'll take a different answer:
Ok, no problem. Let's show that both answers are equivalent.
= \frac{pe^{-px}}{(1 + e^{-px})^2}
= \frac{(e^{2px})pe^{-px}}{(e^{2px})(1 + 2e^{-px} + e^{-2px})}
= \frac{pe^{px}}{e^{2px} + 2e^{px} + 1}
And finally
= \frac{pe^{px}}{(e^{px} + 1)^2}
Limits in +\infty and -\infty
The two limits are easy to do:
lim_{x \to +\infty }{\frac {1}{1 + e^{-px}}} = \frac {1}{1 + \frac{1}{\infty}} = \frac {1}{1 + 0} = 1
lim_{x \to -\infty }{\frac {1}{1 + e^{-px}}} = \frac {1}{1 + e^{p\infty}} = \frac {1}{1 + \infty} = 0
Nenhum comentário:
Postar um comentário